首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   21篇
  国内免费   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2015年   4篇
  2014年   4篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1982年   4篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1945年   1篇
排序方式: 共有95条查询结果,搜索用时 535 毫秒
41.
42.
Insertional transposon mutations in the sll0804 and slr1306 genes were found to lead to a loss of optimal photoautotrophy in the cyanobacterium Synechocystis sp. strain PCC 6803 grown under ambient CO2 concentrations (350 ppm). Mutants containing these insertions (4BA2 and 3ZA12, respectively) could grow photoheterotrophically on glucose or photoautotrophically at elevated CO2 concentrations (50,000 ppm). Both of these mutants exhibited an impaired affinity for inorganic carbon. Consequently, the Sll0804 and Slr1306 proteins appear to be putative components of the carbon-concentrating mechanism in Synechocystis sp. strain PCC 6803.  相似文献   
43.
The present research investigates factors contributing to bradykinesia in the control of simple and complex voluntary limb movement in Parkinson’s disease (PD) patients. The functional scheme of the basal ganglia (BG)–thalamocortical circuit was described by a mathematical model based on the mean firing rates of BG nuclei. PD was simulated as a reduction in dopamine levels, and a loss of functional segregation between two competing motor modules. In order to compare model simulations with performed movements, flexion and extension at the elbow joint is taken as a test case. Results indicated that loss of segregation contributed to bradykinesia due to interference between competing modules and a reduced ability to suppress unwanted movements. Additionally, excessive neurotransmitter depletion is predicted as a possible mechanism for the increased difficulty in performing complex movements. The simulation results showed that the model is in qualitative agreement with the results from movement experiments on PD patients and healthy subjects. Furthermore, based on changes in the firing rate of BG nuclei, the model demonstrated that the effective mechanism of Deep Brain Stimulation (DBS) in STN may result from stimulation induced inhibition of STN, partial synaptic failure of efferent projections, or excitation of inhibitory afferent axons even though the underlying methods of action may be quite different for the different mechanisms.  相似文献   
44.

Background

When natural hybridization occurs at sites where the hybridizing species differ in abundance, the pollen load delivered to the rare species should be predominantly from the common species. Previous authors have therefore proposed a hypothesis on the direction of hybridization: interspecific hybrids are more likely to have the female parent from the rare species and the male parent from the common species. We wish to test this hypothesis using data of plant hybridizations both from our own experimentation and from the literature.

Results

By examining the maternally inherited chloroplast DNA of 6 cases of F1 hybridization from four genera of plants, we infer unidirectional hybridization in most cases. In all 5 cases where the relative abundance of the parental species deviates from parity, however, the direction is predominantly in the direction opposite of the prediction based strictly on numerical abundance.

Conclusion

Our results show that the observed direction of hybridization is almost always opposite of the predicted direction based on the relative abundance of the hybridizing species. Several alternative hypotheses, including unidirectional postmating isolation and reinforcement of premating isolation, were discussed.  相似文献   
45.
This report describes a Chlamydomonas reinhardtii mutant that lacks Rubisco activase (Rca). Using the BleR (bleomycin resistance) gene as a positive selectable marker for nuclear transformation, an insertional mutagenesis screen was performed to select for cells that required a high-CO2 atmosphere for optimal growth. The DNA flanking the BleR insert of one of the high-CO2-requiring strains was cloned using thermal asymmetric interlaced-polymerase chain reaction and inverse polymerase chain reaction and sequenced. The flanking sequence matched the C. reinhardtii Rca cDNA sequence previously deposited in the National Center for Biotechnology Information database. The loss of a functional Rca in the strain was confirmed by the absence of Rca mRNA and protein. The open reading frame for Rca was cloned and expressed in pSL18, a C. reinhardtii expression vector conferring paromomycin resistance. This construct partially complemented the mutant phenotype, supporting the hypothesis that the loss of Rca was the reason the mutant grew poorly in a low-CO2 atmosphere. Sequencing of the C. reinhardtii Rca gene revealed that it contains 10 exons ranging in size from 18 to 470 bp. Low-CO2-grown rca1 cultures had a growth rate and maximum rate of photosynthesis 60% of wild-type cells. Results obtained from experiments on a cia5 rca1 double mutant also suggest that the CO2-concentrating mechanism partially compensates for the absence of an active Rca in the green alga C. reinhardtii.  相似文献   
46.
The pyrenoid is a prominent proteinaceous structure found in the stroma of the chloroplast in unicellular eukaryotic algae, most multicellular algae, and some hornworts. The pyrenoid contains the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase and is sometimes surrounded by a carbohydrate sheath. We have observed in the unicellular green alga Chlamydomonas reinhardtii Dangeard that the pyrenoid starch sheath is formed rapidly in response to a decrease in the CO2 concentration in the environment. This formation of the starch sheath occurs coincidentally with the induction of the CO2-concentrating mechanism. Pyrenoid starch-sheath formation is partly inhibited by the presence of acetate in the growth medium under light and low-CO2 conditions. These growth conditions also partly inhibit the induction of the CO2-concentrating mechanism. When cells are grown with acetate in the dark, the CO2-concentrating mechanism is not induced and the pyrenoid starch sheath is not formed even though there is a large accumulation of starch in the chloroplast stroma. These observations indicate that pyrenoid starch-sheath formation correlates with induction of the CO2-concentrating mechanism under low-CO2 conditions. We suggest that this ultrastructural reorganization under lowCO2 conditions plays a role in the CO2-concentrating mechanism C. reinhardtii as well as in other eukaryotic algae.  相似文献   
47.
48.
49.
50.
Trypsin treatment of spinach chloroplast thylakoids in the light but not in the dark, results in a highly active Mg2+-ATPase and an uncoupling of photophosphorylation. These light-dependent effects are due to a modification of coupling factor 1 (CF1). CF1 purified from thylakoids treated with trypsin in the light contained a clipped beta subunit and a partially clipped gamma subunit, whereas that from thylakoids treated in the dark with trypsin contained only the clipped beta subunit. CF1 containing this modified gamma subunit also retained a high level of Ca2+-ATPase activity in solution. These results suggest that the gamma subunit becomes highly sensitive to trypsin only when the CF1 is in an active conformation. A similar hypersensitivity to proteases of the gamma subunit in highly purified CF1 is seen only after the enzyme is activated (Moroney, J. V., and McCarty, R. E. (1982) J. Biol. Chem. 257, 5910-5914). The conversion of the enzyme to its active form, both on the membrane and in solution, therefore, seems to involve conformational changes that expose the gamma subunit to proteolysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号